Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(13): 19185-19205, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358629

RESUMEN

Groundwater serves as a primary water source for various purposes. Therefore, aquifer pollution poses a critical threat to human health and the environment. Identifying the aquifer's highly vulnerable areas to pollution is necessary to implement appropriate remedial measures, thus ensuring groundwater sustainability. This paper aims to enhance groundwater vulnerability assessment (GWVA) to manage aquifer quality effectively. The study focuses on the El Orjane Aquifer in the Moulouya basin, Morocco, which is facing significant degradation due to olive mill wastewater. Groundwater vulnerability maps (GVMs) were generated using the DRASTIC, Pesticide DRASTIC, SINTACS, and SI methods. To assess the effectiveness of the proposed improvements, 24 piezometers were installed to measure nitrate concentrations, a common indicator of groundwater contamination. This study aimed to enhance GWVA by incorporating new layers, such as land use, and adjusting parameter rates based on a comprehensive sensitivity analysis. The results demonstrate a significant increase in Pearson correlation values (PCV) between the produced GVMs and measured nitrate concentrations. For instance, the PCV for the DRASTIC method improved from 0.42 to 0.75 after adding the land use layer and adjusting parameter rates using the Wilcoxon method. These findings offer valuable insights for accurately assessing groundwater vulnerability in areas with similar hazards and hydrological conditions, particularly in semi-arid and arid regions. They contribute to improving groundwater and environmental management practices, ensuring the long-term sustainability of aquifers.


Asunto(s)
Agua Subterránea , Nitratos , Humanos , Nitratos/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Abastecimiento de Agua , Contaminación del Agua/análisis
2.
Sci Rep ; 13(1): 21165, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036656

RESUMEN

An abrupt outbreak of COVID-19 caused enormous global concerns. Although all countries around the world are severely affected, developing Asian countries faced more difficulties due to their low per capita GDP. The temperature was considered a leading variable in spreading viral diseases, including COVID-19. The present study aimed to assess the relationship between temperature and the spread of COVID-19, with a focus on developing Asian countries. In a few Asian countries, COVID-19 spread rapidly in the summer, while in some countries, there is an increase in winter. A linear correlation was developed between COVID-19 cases/deaths and temperature for the selected countries, which were very weak. A coefficient of determination of 0.334 and 0.365 was observed between cases and average monthly max/min temperatures. A correlation of R2 = 0.307 and 0.382 was found between deaths and average max/min monthly temperatures, respectively. There is no scientific reason to assume that COVID-19 is more dominant at low than high temperatures. Therefore, it is believed that the results may be helpful for the health department and decision-makers to understand the fast spread of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Temperatura , Asia/epidemiología , Brotes de Enfermedades
3.
Sci Rep ; 13(1): 5555, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019977

RESUMEN

Urban surfaces are often covered by impermeable materials such as concrete and asphalt which intensify urban runoff and pollutant concentration during storm events, and lead to the deterioration of the quality of surrounding water bodies. Detention ponds are used in urban stormwater management, providing two-fold benefits: flood risk reduction and pollution load minimization. This paper investigates the performance of nine proposed detention ponds (across the city of Renton, Washington, USA) under different climate change scenarios. First, a statistical model was developed to estimate the pollutant load for the current and future periods and to understand the effects of increased rainfall on stormwater runoff and pollutant loads. The Personal Computer Storm Water Management Model (PCSWMM) platform is employed to calibrate an urban drainage model for quantifying stormwater runoff and corresponding pollutant loads. The calibrated model was used to investigate the performance of the proposed nine (9) detention ponds under future climate scenarios of 100-year design storms, leading to identifying if they are likely to reduce stormwater discharge and pollutant loads. Results indicated significant increases in stormwater pollutants due to increases in rainfall from 2023 to 2050 compared to the historical period 2000-2014. We found that the performance of the proposed detention ponds in reducing stormwater pollutants varied depending on the size and location of the detention ponds. Simulations for the future indicated that the selected detention ponds are likely to reduce the concentrations (loads) of different water quality constituents such as ammonia (NH3), nitrogen dioxide (NO2), nitrate (NO3), total phosphate (TP), and suspended solids (SS) ranging from 18 to 86%, 35-70%, 36-65%, 26-91%, and 34-81%, respectively. The study concluded that detention ponds can be used as a reliable solution for reducing stormwater flows and pollutant loads under a warmer future climate and an effective adaptation option to combat climate change related challenges in urban stormwater management.

4.
Sci Rep ; 13(1): 5061, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977703

RESUMEN

Land-use/land-cover (LULC) change is considered a key human factor influencing groundwater recharge in floodplains. Without accurate estimations, the impact of LULC change on water balance components may be either significantly understated or exaggerated. This paper assesses the impacts of LULC changes from 1990 to 2018 on water balance components and groundwater levels of the Drava floodplain, Hungary, where human interference has led to a critical environmental situation. In this study, a spatially-distributed water balance model (WetSpass-M), and a groundwater flow model (MODFLOW-NWT) were integrated to assess the impacts of LULC changes. The moderate expansion of built-up areas increased surface runoff, while the afforestation of arable land and meadows and the overgrowth of bare mudflats with willow shrubs increased evapotranspiration. As a consequence, total annual groundwater recharge decreased by 5.3 × 107 m3 in the floodplain with an average of 335 mm year-1 and 317 mm year-1 in 2012 and 2018, respectively. Moreover, an average groundwater level decline by 0.1 m is observed in the same period. Declined groundwater recharge, increased runoff, and evapotranspiration exerted a negative effect on water resources in the Drava basin. The approach tested in this paper allows temporal and spatial estimation of hydrological components under the changes of LULC, providing quantitative information for decision-makers and stakeholders to implement efficient and sustainable management of water resources in the Drava floodplain. The provided integrated model is also applicable to regionally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...